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Abstract 
In an n-dimensional space, generally, n coordinates 
are used in a coordinate system. Using more than n 
coordinates, however, is sometimes more efficient in 
representing discrete spaces. This paper illustrates the 
application of using four coordinates to describe a three- 
dimensional face-centered cubic (f.c.c.) lattice. By the 
proposed method of description, all points in a f.c.c, lat- 
tice can be conveniently addressed by integer numbers. 
Many geometric computations in this discrete space are 
also much simplified in the new coordinate system. 

Introduction 
Ren6 Descartes, the 17th century French thinker and 
philosopher, is also remembered as an innovator in math- 
ematics. His introduction of the concept of coordinate 
systems expanded the scope of geometry into analytical 
geometry. Scientists and engineers in all disciplines 
rarely do research without first choosing an appropri- 
ate coordinate system to represent the physical system 
involved. Mathematically, the purpose of a coordinate 
system is to address any point in the physical space 
concerned, be it continuous or discrete, with a convenient 
and unique set of indices called coordinates. In general, 
in an n-dimensional space, a set of n linearly independent 
coordinates are used. 

The physical meaning of the values of the coor- 
dinates is distinctly defined in a particular coordinate 
system. A convenient definition is used in the familiar 
Cartesian system, as described in the following manner: 
in an n-dimensional space, we first select n mutually 
orthogonal n-1-dimensional subspaces as references for 
the n-dimensional Cartesian coordinate system. The co- 
ordinates of a point are then defined as an ordered 
series of the distances from that point to the n refer- 
ential subspaces. The Euclidean distance is commonly 
applied in the above distance measurement. If a Carte- 
sian coordinate system is used to describe a continuous 
space, all coordinates therein are real numbers. On 
the other hand, if the coordinates are all integers, the 
space being described must be discrete. For instance, the 
two-dimensional integer Cartesian coordinate system, 
commonly denoted as 12, describes a planar square grid, 
while the three-dimensional integer Cartesian system, 13 , 
represents a spatial cubic lattice. 
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In theory, it is quite sufficient to use exactly n coor- 
dinates in an n-dimensional space. Using more than this 
number of coordinates only results in linear dependency 
among the coordinates. As a result, little theoretical 
study has been done on this seemingly redundant method 
of description. In practice, however, using more than n 
coordinates in an n-dimensional space sometimes results 
in a surprisingly efficient representation of a particular 
discrete space. Recent research (Her, 1993, 1995; Her 
& Yuan, 1994) shows, for example, such a coordinate 
system is used to effectively describe a two-dimensional 
hexagonal grid for computer graphics and vision. In this 
particular coordinate system, each point in a plane has 
three coordinates (x, y, z), instead of two, and they satisfy 
the following relation: 

x + y + z = O .  (1) 

Fig. 1 illustrates part of the coordinate system in 
question. Since three coordinates are used, we have 
three corresponding referential subspaces (here they are 
lines) which are the x = 0, y = 0 and z = 0 axes, 
respectively. The coordinates (x, y, z) of a point mean 
that this point is on the xth line from the x = 0 axis, 
on the yth line from the y = 0 axis and on the zth line 
from the z -- 0 axis. Note that in Fig. 1 the positive 
and negative sides of an axis are properly assigned. The 
three coordinate axes, intersecting one another at 60 ° , 
happen to be the axes of symmetry of a hexagonal grid. 
The aptly named hexagonal coordinate system is denoted 
as "13 . The hexagonal grid, being the most densely 
packed arrangement in a plane, finds many applications 
in science and engineering (Mersereau, 1979). With the 
help of the hexagonal coordinate system .13, researchers 
can now easily perform many useful mathematical opera- 
tions on the hexagonal grid, which were once considered 
prohibitively difficult (Bell, Holroyd & Mason, 1989; 
Her, 1995). 

The purpose of this paper is to extend the concept 
as well as the advantages of the "13 coordinate system 
to a higher-dimensional space. By analogy, we now 
use four coordinates (x, y, z, w) to describe a point 
in a three-dimensional space. Similar to (1), we also 
assume that we have the following relationship among 
the coordinates: 

x + y + z + w  = 0. (2) 
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If only integer coordinates are used, this new coordinate 
system can duly be denoted as ,14 ,  and it will represent 
a particular lattice in the three-dimensional space. Since 
four coordinates are used, there must also exist four cor- 
responding referential subspaces (now they are planes) 
in this coordinate system ,14. 

What kind of spatial lattice does "14 actually rep- 
resent? Let us return and examine ,13. From Fig. 1, 
we see that "13 in effect is a subspace in the three- 
dimensional Cartesian system 13 , and is the oblique 
plane mathematically defined by (1). The hexagonal 
tessellation of "13 results from the fact that this oblique 
plane slices a cube (the basic geometric feature of an 13 
lattice) into a regular hexagon. As shown in Fig. 1, half 
of the edges of the cube are cut in the middle. Owing to 
this relationship, "13 inherits many geometric properties 
from 13 (Her, 1993; Her & Yuan, 1994). By the same 
reasoning, we realize that "14 is also a subspace in 
the four-dimensional Cartesian system 14 , and it is now 
a hyperplane represented by (2). The basic geometric 
feature of 14 is a four-dimensional hypercube, and Fig. 2 
shows such a hypercube (thin lines) projected onto a 
two-dimensional plane. What geometry do we get when 
a hypercube in 14 is sliced by the hyperplane given by 
(2) ? From the geometry of higher dimensions (Banchoff 
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Fig. 1. A cube centered at the origin of 13 is shown sliced by the (x -t- 
y -t- z = 0) plane to form a hexagonal intersection (a), which is the 
basic feature of the hexagonal coordinate system ,13 (b). 

& Strauss, 1978), we learn that such an intersection is 
indeed a regular octahedron (as shown by the thick lines 
in Fig. 2), where half of the faces of the hypercube 
are cut diagonally by the hyperplane. Therefore, we 
see that *I 4 must represent an octahedral lattice in the 
three-dimensional space, and we can refer to *I  4 as  the 
octahedral coordinate system. 

An octahedron is a twelve-sided eight-faced three- 
dimensional geometric object with six vertices. If we put 
a lattice point at each of the six vertices in an octahedron 
(Fig. 3), we will have a basic octahedral lattice whose 
sides are exactly one unit long. In Fig. 3, we also show 
an octahedral lattice whose sides are two units long, and 
contains a total of 19 points. On examining this lattice 
closely, we realize that it is a face-centered cubic (f.c.c.) 
lattice. The f.c.c, lattice is one of the most closely packed 
lattice arrangements in three dimensions. In nature, the 
f.c.c, lattice is found in crystal structures of metals like 
aluminium, copper, silver and gold (Kalpakjian, 1989). 
In the following, we will use the f.c.c, lattice in Fig. 3 
for further explanation. 

As mentioned, there are four referential planes in 
the octahedral coordinate system *I 4. With reference to 
Fig. 3, we assign the center point O of the f.c.c, lattice as 

Fig. 2. A four-dimensional hypercube centered at the origin of 14 and 
sliced by the (x + y + z + w = 0) hyperplane. The intersection is a 
regular octahedron, which is the basic geometric feature of ,14. 

Fig. 3. hal octahedral lattice whose side length is 1 unit (thick lines) 
contains only six lattice points, whereas an octahedral lattice whose 
side length is 2 units (thick lines plus thin lines) contains 19 lattice 
points. 
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the origin (0, 0, 0, 0) of "14. The four referential planes 
are then represented by the four hexagons GHJLKI, 
DEJPNI, BDKRPH, and BELRNG containing the origin 
O. Each hexagon is parallel to two of the faces of the 
octahedron. Let us assume that hexagon GHJLKI is the w 
= 0 plane and w is positive above that plane. Comparing 
hexagon GHJLKI with the hexagon in Fig. 1, we can 
easily label the "14 coordinates of the lattice points on 
hexagon GHJLKI, as shown in Fig. 4. Since hexagon 
DEJPNI intersects the w = 0 plane at the x = 0 axis 
on that plane, it must correspond to the x = 0 reference 
plane in "14. Similarly, we see that hexagons BDKRPH 
and BELRNG are the y = 0 and z = 0 planes in "14, 
respectively. Now all lattice points in Fig. 4 can be 
labeled according to the assignment of these reference 
planes and their sign conventions. We encourage readers 
to add more f.c.c, lattice points to Fig. 4 and see what 
their "14 coordinates are. 

In .14, the coordinates of a point (x, y, z, w) indicate 
that  the point is on the xth plane from the x = 0 plane, 
on the yth plane from the y = 0 plane, on the zth plane 
from the z = 0 plane and on the wth plane from the 
w = 0 plane. A lattice point (x, y, z, w) has 12 immediate 
neighbors in *I 4 and their coordinates are: 

(x+ 1,y- 1,z,w), 

( x +  1,y,z  - 1,w), 

(x + 1 , y , z , w -  1), 

(x,y + 1 , z -  1,w), 

(x,y + 1 , z , w -  1), 

(x,y,z + 1 , w -  1), 

(x-  1,y + 1,z,w), 

( x -  1 , y , z +  1,w), 

( x -  1 ,y , z ,w+ 1), 

( x , y -  1,z + 1,w), 

( x , y -  1 , z ,w+ 1), 

( x , y , z -  1 , w +  1). 

(3) 

Conventionally, the distance between any two immediate 
neighboring lattice points, for the sake of convenience, 
is defined as one unit. In .14, some spatial geometries 

( -1 ,1 , -~  (1~ 
(-I,O,0~,-I,~ 
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Fig. 4. All points in a f.c.c, lattice can be addressed by integer coordinates 
in ,14. These coordinates, however, must satisfy the relationship 
(x + y + z + w=O). 

that are difficult to describe in 13 can now be easily rep- 
resented. For example, consider the following formula: 

Ixl _< a, lyl < a, Izl _< a, Iwl _< a. (4) 

In 14, this equation denotes a hypercube centered at the 
origin. However, in "14, as we can see from Fig. 4, it 
now represents a regular octahedral volume centered at 
the origin, and the length of its sides is precisely 2a. In 
addition, it can also be shown that the following equation 
represents a regular tetrahedral volume, centered at the 
origin, and whose side length is equal to 4a. 

x < a ,  y < a ,  z < a ,  w < a .  (5) 

Since the octahedral coordinate system "14 is, in fact,  
a subspace in the four-dimensional Cartesian system I n, 

some geometrical computations in ,14 must have very 
similar forms as those in I 4. For example, let the vertices 
of a regular tetrahedron in "14 have coordinates (xi, Yi, 
zi, wi), i = 1-4. Then, by the mid-point law, the centroid 
of this tetrahedron must be located at (1/4)~_,(xi, Yi, zi, 
wi). Moreover, owing to analogy, the Euclidean distance 
between any two points (Xl, Yl, Zl, Wl) and (x2, Y2, z2, 
w2) in I 4 is represented by the following formula: 

[(x, - x2) 2 + (Yl - Y2) 2 + (z, - z2) 2 + (w, - w 2 ) 2 1 1 / 2 .  

(6) 

From (3) and (6), we see that the distance between two 
neighboring *I 4 lattice points is 21/2 units long in 14. 
Knowing this scaling relationship, we can modify (6) 
so that it can readily be used to compute the distance 
between any two lattice points in *I 4. That is, the 
Euclidean distance in "14 is simply given as 

{[(Xl - x2) 2 + (Yl - Y2) 2 + ( Z1 - -  Z2) 2 + ( W1 - -  W 2 ) 2 ] / 2 }  1/2. 

(7) 

It is clear that use of the integer octahedral coordinate 
system "14 and (7) facilitates greatly simplified distance 
measurements in a f.c.c, lattice. The distance function in 
(7) can also be used to define some spatial geometries 
in "14 , e.g. spheres and ellipsoids. Finally, we note that 
there is a 48-fold symmetry in " 1  4.  This property is again 
very compatible to the description of a f.c.c, lattice. 

Concluding remarks  

This concludes our brief introduction on the use of the 
octahedral coordinate system "14, which is essentially 
a subspace in the four-dimensional Cartesian system 
14. Using "14, every point in a f.c.c, lattice can be 
addressed by integer coordinates and distance measure- 
ments among lattice points are very easy to calculate. A 
similar coordinate system, .13, used to describe a planar 
hexagonal grid, has been proved to be theoretically accu- 



662 F.C.C. LATHCE GEOMETRY THROUGH A FOUR-DIMENSIONAL HYPERCUBE 

rate and practically efficient as applied to many computer 
graphics and image-processing-related operations. The 
purpose of our study is to introduce these innovative 
coordinate systems to a wider audience, thus facilitating 
their use. In our opinion, the "13 and "14 coordinate 
systems will be useful in many areas of scientific and 
engineering endeavors. 

The author thanks Mr Greg Ferrar for putting his 
HyperCuber2.0 program in the public domain. The 
drawing of Fig. 2 would have been difficult without 
this marvelous software. The author is also indebted 

to Mr Frederick J. Bailey Jr for his kind assistance in 
proofreading the manuscript. 
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Abstract 
The wavelength dependence of extinction in an NiF2 
crystal of well known mosaicity has been examined 
by "),-radiation of wavelengths 0.0205, 0.0265, 0.0392 
and 0.0603 A. The results for seven strong low-order 
reflections, some of them symmetrically equivalent, are 
related to the extinction models of Becker & Cop- 
pens [Acta Cryst. (1975), A31, 417-425] and Sabine 
[International Tables for Crystallography (1992), Vol. 
C, pp. 530-533. Dordrecht: Kluwer]. In the considered 
wavelength region, the extinction-affected observed in- 
tensity is approximately a linear function of A a, and 
secondary extinction is found to be dominant. Allowance 
for pure secondary extinction according to the Becker & 
Coppens formalism yields both a satisfactory description 
of the wavelength dependence and mosaicities close to 
the directly observed ones. With the Sabine model, the 
influence of the mosaic distribution has to be excluded 
in order to describe the data properly. Hypothetical 
assumption of pure primary extinction, however, leads to 
nonrealistic mosaic-block sizes between 50 and 100 ~tm. 
This model is therefore not supported by experiment. 

Introduction 
Darwin's simple concept of the mosaic crystal and his 
energy-transport equations form the basis of standard ex- 
tinction models, which all assume a clear-cut separation 
into two different extinction mechanisms. The intensity 
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loss associated with coherent scattering in an individual 
perfect crystal block is termed primary extinction; the 
loss due to incoherent scattering from several different 
mosaic blocks is termed secondary extinction. 

The theory of Zachariasen (1967) and its develop- 
ment by Becker & Coppens (1974, 1975) has been 
applied successfully in calculating structure factors close 
to the observed ones, even though it has some basic 
deficiencies. In particular, the Darwin equations involve 
intensities rather than amplitudes and thus the phase- 
dependent scattering in the case of primary extinction is 
not treated adequately (e.g. Lawrence, 1977). 

Within the framework of intensity coupling, Sabine 
(1992) has proposed a theory in which primary and 
secondary extinction are treated in a unified way. His 
formulation, however, leads to an extinction correction 
factor that shows a substantially different dependence 
on physical quantities, especially on the wavelength, 
as compared to the previous theories. It has been in- 
cluded in Volume C of International Tables for Crys- 
tallography (Sabine, 1992), whereas descriptions of the 
widely adopted treatments of Zachariasen and Becker 
& Coppens are missing. It must be emphasized that 
the reliability of the wavelength variation of extinction 
corrections is of particular importance in white-beam 
diffraction techniques, which are used at synchrotron and 
pulsed spaUation neutron sources. 

7-ray diffraction is well suited for an experimental 
test of different extinction models. Four wavelengths of 
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